The Cao Group

Molecular Simulation & Solar Energy Conversion
2024
192.Li,W.;Peng,X.*;Qin,H.;Xu,Y.;Han,J.;Lei,H.;Cao,R.*; Electrocatalytic hydrogen evolution reaction with a Cu porphyrin bearing meso-CF3 substituents. Dalton Trans., 2024, 53, 19121-19125.  
191.Zhang,J.;Mou,Y.;Suo,W.;Yang,S.;Shen,J.;Xu,H.;Zeng,Z.;Zhang,R.;Liang,Z.*;Wang,Y.*;Zheng,H.*;Cao,J.*;Cao,R.*; Single-Atomic Co-N-C Sites Anchored on Helical Carbonaceous Nanotubes for the Oxygen Reduction Reaction. Adv. Funct. Mater., 2025, 35, 2417621.  
190.Zhao,Q.;Zhang,Q.;Xu,Y.;Han,A.;He,H.;Zheng,H.;Zhang,W.;Lei,H.*;Apfel,U.;Cao,R.*; Improving Active Site Local Proton Transfer in Porous Organic Polymers for Boosted Oxygen Electrocatalysis. Angew. Chem. Int. Ed., 2024, 63, e202414104.  
189.Xu,Y.;Jin,X.;Zhang,J.;Qin,H.;Mei,B.;Liu,T.;Lei,S.;Li,S.;Bo,Y.;Li,X.*;Cao,R.*; Regulating Steric Effect of Cobalt Corroles for Promoted Oxygen Electrocatalysis. ACS Catal., 2024, 14, 14350-14355.  
188.Wang,Z.;Li,X.*;Cao,R.*; Structural Effects of Metal Porphyrins and Metal Corroles on the Mechanisms of the Oxygen Reduction Reaction. Sci. Sin.: Chim., 2024, 54, 1689-1699.  
187. Wang M.;Feng X.;Li S.;Ma Y.;Peng Y.;Yang S.;Lei H.,Dang J.,Zhang W.,Cao R.,Zheng H.*;Spinel-Type Metal Oxides with Tailored Amorphous/Crystalline Heterointerfaces for Enhanced Electrocatalytic Water Splitting;Adv. Funct. Mater., 2024, 34, 2410439  
186.Liu,Y.;Wang,M.;Liang,Z.*;Zheng,H.*; Surfactant-metal-organic framework complexes and their derivatives: advances in electrocatalysis. Sci. China Chem., 2024, 67, 3209-3222.  
185.Liang,Z.;Zhou,G.;Tan,H.;Mou,Y.;Zhang,J.;Guo,H.;Yang,S.;Lei,H.;Zheng,H.*;Zhang,W.;Lin,H.*;Cao,R.*; Constructing Co4(SO4)4 Clusters within Metal–Organic Frameworks for Efficient Oxygen Electrocatalysis. Adv. Mater., 2024, 36, 2408094.  
184.Han,J.;Tan,H.;Guo,K.;Lv,H.;Peng,X.;Zhang,W.;Lin,H.*;Apfel,U.;Cao,R.*; The "Pull Effect" of a Hanging ZnII on Improving the Four-Electron Oxygen Reduction Selectivity with Co Porphyrin. Angew. Chem. Int. Ed., 2024, 63, e202409793.  
183.Yang,S.;Jiang,P.;Yue,K.;Guo,K.;Yang,L.;Han,J.;Peng,X.;Zhang,X.;Zheng,H.;Yang,T.;Cao,R.;Yan,Y.*;Zhang,W.*; Manganese pyrophosphate with multiple coordinated water molecules for electrocatalytic water oxidation. Chin. J. Catal., 2024, 62, 166-177.  
182.Zheng,H.;Che,S.*; Precision design of Ti sites for unprecedented catalytic performance. Natl. Sci. Rev., 2024, 11, nwae172.  
181.Yang,S.;Liu,X.;Li,S.;Yue,K.;Fan,Y.;Yan,Y.*;Zhang,W.*; Effects from Surface Structures of Manganese Phosphate on Electrocatalytic Water Oxidation. J. Phys. Chem. C, 2024, 128, 8181-8187.  
180.He,H.;Qiu,Z.;Yin,Z.;Kong,J.;Dang,J.*;Lei,H.*;Zhang,W.;Cao,R.*; The meso-substituent electronic effect of Fe porphyrins on the electrocatalytic CO2 reduction reaction. Chem. Commun., 2024, 60, 5916-5919.  
179.Liu,T.;Qin,H.;Xu,Y.;Peng,X.;Zhang,W.;Cao,R.*; Steric Effects on the Oxygen Reduction Reaction with Cobalt Porphyrin Atropisomers. ACS Catal., 2024, 14, 6644-6649.  
178.Zhao,Q.;Zhang,Q.;Wu,Y.;Xiao,Z.;Peng,Y.;Zhou,Y.;Zhang,W.;Lei,H.*;Cao,R.*; Pore size modulation of cobalt-corrole-based porous organic polymers for boosted electrocatalytic oxygen reduction reaction. Materials Today Catalysis, 2024, 5, 100050.  
177.Yang,S.;Liu,X.;Li,S.;Yuan,W.;Yang,L.;Wang,T.;Zheng,H.*;Cao,R.*;Zhang,W.*; The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem. Soc. Rev., 2024, 53, 5593-5625.[Highly Cited Paper]  
176.Yang,L.;Yang,S.;Kong,J.;Yuan,W.;Li,S.;Liu,X.;Cao,R.;Zhang,W.*; Blocking the bimolecular pathway of water oxidation electrocatalyzed by copper porphyrin with a surfactant. Catal. Sci. Technol., 2024, 14, 3131-3136.  
175.Yao,H.;Zhang,H.*;Zheng,H.*; The Construction of Helical Carbon-Based Skeletons for Enhanced Electrocatalytic Performance. ChemCatChem, 2024, 16, e202400177.  
174.Xu,X.;Liu,J.;Xiao,Z.;Li,S.;Zhang,Y.;Song,P.;Lin,K.;Zhang,L.;Zheng,H.*;Zhou,Y.*;Chen,X.*; Zeolitic imidazolate framework-90 loaded with methylprednisolone sodium succinate effectively reduces hypertrophic scar in vivo. Nanoscale, 2024, 16, 6708-6719.  
173.Cao,Y.;Mou,Y.;Zhang,J.;Zhang,R.*;Liang,Z.*; Porphyrin-based frameworks and derivatives for the oxygen reduction reaction. Materials Today Catalysis, 2024, 4, 100044.  
172.Kong,J.;Qin,H.;Yang,L.;Zhang,J.;Peng,Y.;Gao,Y.;Wu,Y.;Nam,W.*;Cao,R.*; Covalent Tethering of Cobalt Porphyrins on Phenolic Resins for Electrocatalytic Oxygen Reduction and Evolution Reactions. ChemPhysChem, 2024, 25, e202400017.  
171.Peng,X.;Zhang,M.;Qin,H.;Han,J.;Xu,Y.;Li,W.;Zhang,X.*;Zhang,W.;Apfel,U.;Cao,R.*; Switching Electrocatalytic Hydrogen Evolution Pathways through Electronic Tuning of Copper Porphyrins. Angew. Chem. Int. Ed., 2024, 63, e202401074.[Highly Cited Paper]  
170.Yang,S.;Yue,K.;Liu,X.;Li,S.;Zheng,H.;Yan,Y.*;Cao,R.;Zhang,W.*; Electrocatalytic water oxidation with manganese phosphates. Nat. Commun., 2024, 15, 1410.[Highly Cited Paper]  
169.Hua,R.;Bao,Z.;Peng,Y.;Lei,H.;Liang,Z.;Zhang,W.;Cao,R.;Zheng,H.*; A twisted carbonaceous nanotube as the air-electrode for flexible Zn–Air batteries. Chem. Commun., 2024, 60, 1476-1479.  
168.Liang,Z.;Zhang,J.;Zheng,H.*;Cao,R.*; Hierarchically porous aggregates of Co–N–C nanoparticles for oxygen electrocatalysis. Chem. Commun., 2024, 60, 2216-2219.  

167.Wang,Y.;Yang,T.;Fan,X.;Bao,Z.;Tayal,A.;Tan,H.;Shi,M.;Liang,Z.;Zhang,W.;Lin,H.*;Cao,R.;Huang,Z.*;Zheng,H.*; Anchoring Fe Species on the Highly Curved Surface of S and N Co-Doped Carbonaceous Nanosprings for Oxygen Electrocatalysis and a Flexible Zinc-Air Battery. Angew. Chem. Int. Ed., 2024, 63, e202313034.

 

166.Peng,Y.;Li.S.;Wang,M.;Xiong,X.;Dang,J.;Zhang,W.;Cao,R.;Zheng,H.*; Facet engineering of a two-dimensional metal-organic framework with uniquely oriented layered-structure for electrocatalytic oxygen reduction reaction. J. Colloid Interface Sci., 2024, 658, 518-527.

 
165.Sun,H.;Awada,H.;Lei,H.;Aljabour.A.;Song,L.;Offenthaler,S.;Cao,R.*;Schöfberger,W.*; Tuning ORR selectivity of π-conjugated cobalt corroles from 2e- to 4e-. Materials Today Catalysis, 2024, 4, 100038.  
164.Liang,Z.;Zhang,J.;Suo,W.;Zheng,H.;Wang,Y.*;Cao,R.*; Hollow nanoparticles doped hierarchical hexagonal star shaped cobalt-based phosphosulfides for water splitting. J. Alloys Compd., 2024, 971, 172775.  
163.Li,X.*;Qin,H.;Han,J.;Jin,X.;Xu,Y.;Yang,S.;Zhang,W.;Cao,R.*; A One-Pot Three-In-One Synthetic Strategy to Immobilize Cobalt Corroles on Carbon Nanotubes for Oxygen Electrocatalysis. Adv. Funct. Mater., 2024, 34, 2310820.  
2023
162.Yang,S.;Han,J.;Zhang,W.*; Proton-Coupled Electron Transfer in Electrocatalytic Water Splitting. Chem. Eur. J., 2023, 29, e202302770.  
161.Meng,J.;Qin,H.;Lei,H.;Li,X.;Fan,J.;Zhang,W.;Apfel,U.;Cao,R.*; Adapting Synthetic Models of Heme/Cu Sites to Energy-Efficient Electrocatalytic Oxygen Reduction Reaction. Angew. Chem. Int. Ed., 2023, 62, e202312255.  
160.Cang,C.;Zheng,H.*; Tandem electrocatalytic nitrate reduction reaction. Chin. J. Struct. Chem., 2023, 42, 100143.  
159.Lv,H.;Zhang,X.;Guo,K.;Han,J.;Guo,H.;Lei,H.;Li,X.;Zhang,W.;Apfel,U.;Cao,R.*; Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angew. Chem. Int. Ed., 2023, 62, e202305938.  
158.Wang,T.;Yang,S.;Zheng,H.;Zhang,W.*;Cao,R.*; A layered CoSeO3 pre-catalyst for electrocatalytic water oxidation. Dalton Trans., 2023, 52, 15518-15523.  
157.Peng,X.;Han,J.;Li,X.;Liu,G.;Xu,Y.;Peng,Y.;Nie,S.;Li,W.;Li,X.;Chen,Z.;Peng,H.*;Cao,R.*;Fang,Y.; Electrocatalytic hydrogen evolution with a copper porphyrin bearing meso-(o-carborane) substituents. Chem. Commun., 2023, 59, 10777-10780.  
156.Gao,Y.;Mei,B.;Wu,Y.;Zhao,Q.;Bao,Z.;Qin,H.;Xu,Y.;Lv,H.;Peng,X.;He,Y.;Luo,T.;Yao,R.;Zhang,W.;Lei,H.*;Cao,R.*; A Cobalt(Ⅲ) Corrole with a Tethered Imidazole for Boosted Electrocatalytic Oxygen Reduction Reaction. Chin. J. Chem., 2023, 41, 2866-2872.  
155.Liu,X.;Shi,M.;Tang,X.;Ma,Y.;Dang,J.;Yan,X.;Gu,Q.;Bao,Z.;Liang,Z.;Zhang,W.;Cao,R.;Zheng,H.*; Helical Anatase Titanium Nanotubes through a Protected Crystallization Strategy for Enhanced Photocatalytic Performance. Chem. Eur. J., 2023, 29, e202300464.  
154.Gao,Y.;Lei,H.*;Guo,H.;Meng,J.;Zhang,Q.;Zhao,Q.;Li,J.;Zhou,Z.;Feng,W.;Zhang,W.;Cao,R.*; A cobalt corrole with a biologically relevant imidazolium pendant for boosted electrocatalytic oxygen reduction. J. Porphyrins Phthalocyanines, 2023, 27, 719-727.  

153.Xue,S.;Osterloh,W.;Lv,X.;Liu,N.;Gao,Y.;Lei,H.*;Fang,Y.;Sun,Z.;Mei,P.;Kuzuhara,D.;Aratani,N.;Yamada,H.;Cao,R.;Kadish,K.*;Qiu,F.*; Enhanced Four-Electron Oxygen Reduction Selectivity of Clamp-Shaped Cobalt(Ⅱ) Porphyrin(2.1.2.1) Complexes. Angew. Chem. Int. Ed., 2023, 62, e202218567.

 
152.Bao,Z.;Zhou,G.;Liu,X.;Peng,Y.;Huang,Z.*;Zheng,H.*; A bimetallic 3D interconnected metal–organic framework with 2D morphology and its derived electrocatalyst for oxygen reduction. CrystEngComm, 2023, 25, 1869-1873.  
151.Xue,S.*;Lv,X.;Liu,N.;Zhang,Q.;Lei,H.*;Cao,R.;Qiu,F.*; Electrocatalytic Hydrogen Evolution of Bent Bis(dipyrrin) Ni(Ⅱ) Complexes. Inorg. Chem., 2023, 62, 1679-1685.  
150.Gao,Y.;Lei,H.*;Bao,Z.;Liu,X.;Qin,L.;Yin,Y.;Li,H.;Huang,S.;Zhang,W.;Cao,R.*; Electrocatalytic oxygen reduction with cobalt corroles bearing cationic substituents. Phys. Chem. Chem. Phys., 2023, 25, 4604-4610.  
149.Wang,N.;Zhang,X.;Han,J.;Lei,H.;Zhang,Q.;Zhang,H.*;Zhang,W.;Apfel,U.;Cao,R.*; Promoting hydrogen evolution reaction with a sulfonic proton relay. Chin. J. Catal., 2023, 45, 88-94.  
148.Zhang,H.;Wang,F.;Wang,Y.;Wei,H.;Zhang,W.;Cao,R.;Zheng,H.*; Two-dimensional hollow carbon skeleton decorated with ultrafine Co3O4 nanoparticles for enhanced lithium storage. J. Colloid Interface Sci., 2023, 631, 191-200.  
2022

147.Yang,S.;Qin,L.;Zhang,W.*;Cao,R.*; The Mechanism of Water Oxidation from Mn-Based Heterogeneous Electrocatalysts. Chin. J. Struct. Chem., 2022, 41, 2204022-2204033.

 
146.Zheng,J.;Zhou,D.;Han,J.;Liu,J.;Cao,R.;Lei,H.*;Bian,H.*;Fang,Y.; Non-negligible Axial Ligand Effect on Electrocatalytic CO2 Reduction with Iron Porphyrin Complexes. J. Phys. Chem. Lett., 2022, 13, 11811-11817.  
145.Zhang,J.;Yang,L.;Yuan,W.;Yang,S.;Zhang,W.*;Cao,R.*; CoOx Supported on α-MoC for Efficient Electrocatalytic Oxygen Evolution Reaction. ChemElectroChem, 2022, 9, e20220096.  

144.Han,J.;Wang,N.;Li,X.;Lei,H.;Wang,Y.;Guo,H.;Jin,X.;Zhang,Q.;Peng,X.;Zhang,X.*;Zhang,W.;Apfel,U.;Cao,R.*; Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. eScience, 2022, 2, 623-631

 
143.Yang,S.;Chen,D.;Cui,X.*;Zhang,J.*;Zhang,W.*;Cao,R.*; Spherical Ni/Ni3Se2 Heterostructure for Efficient Electrochemical Oxidation Reactions. ChemNanoMat, 2023, 9, e202200509.  
142.Yang,S.;Li,X.;Li,Y.;Wang,Y;Jin,X.;Qin,L;Zhang,W.*;Cao,R.*; Effect of Proton Transfer on Electrocatalytic Water Oxidation by Manganese Phosphates. Angew. Chem. Int. Ed., 2023, 62, e202215594.  

141.Tang,J.;Liang,Z.;Qin,H.;Liu,X.;Zhai,B.;Su,Z.;Liu,Q.;Lei,H.;Liu,K.;Zhao,C*.;Cao,R.*;Fang,Y.*; Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis. Angew. Chem. Int. Ed., 2023, 62, e202214449.[Highly Cited Paper]

 
140.Guo,H.;Liang,Z.;Guo,K.;Lei,H.;Wang,Y.;Zhang,W;Cao,R.*; Iron porphyrin with appended guanidyl group for significantly improved electrocatalytic carbon dioxide reduction activity and selectivity in aqueous solutions. Chin. J. Catal., 2022,43, 3089-3094  
139.Li,X.;Li,P.;Yang,J.;Xie,L.;Wang,N.;Lei,H.;Zhang,C.;Zhang,W.;Lee,Y.;Zhang,W.*;Fukuzumi,S.*;Nam,W.*;Cao,R.*; A cobalt(Ⅱ) porphyrin with a tethered imidazole for efficient oxygen reduction and evolution electrocatalysis. J. Energy Chem., 2022,76, 617-621  
138.Guo,H.;Wang,Y.;Guo,K.;Lei,H.;Liang,Z.*;Zhang,X.-P.*;Cao,R.*; A Co Porphyrin with Electron-Withdrawing and Hydrophilic Substituents for Improved Electrocatalytic Oxygen Reduction. J. Electrochem., 2022, 28, 2214002.  
137.Bao,Z.;Wang,Y.;Shi,M.;Wang,X.;Liang,Z.;Huang,Z.;Zhang,W.;Cao,R.;Zheng,H.*; A helical polypyrrole nanotube interwoven zeolitic imidazolate framework and its derivative as an oxygen electrocatalyst. Chem. Commun., 2022, 58, 11288-11291.  
136.Wang,Y.;Zhang,X.-P.;Lei,H.;Guo,K.;Xu,G.;Xie,L.;Li,X.;Zhang,W.;Apfel,U-P.;Cao,R.*; Tuning Electronic Structures of Covalent Co Porphyrin Polymers for Electrocatalytic CO2 Reduction in Aqueous Solutions. CCS Chem., 2022, 4, 2959–2967.  
135.Liu,T.;Zhang,Q.;Guo,H.;Liang,Z.;Cao,R.*; Electrocatalytic oxygen reduction reaction with metalloporphyrins. Sci. Sin.: Chim., 2022, 52, 1306-1320.  
134.Guo,K.;Li,X.;Lei,H.;Guo,H.;Jin,X.;Zhang,X.-P.*;Zhang,W.;Apfel,U-P.;Cao,R.*; Role-Specialized Division of Labor in CO2 Reduction with Doubly-Functionalized Iron Porphyrin Atropisomers. Angew. Chem. Int. Ed., 2022, 61, e202209602.  
133.Yang,J.;Li,P.;Li,X.;Zhang,W.*;Cao,R.*;Fukuzumi,S.*;Nam,W.*; Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew. Chem. Int. Ed., 2022, 61, e202208143.  
132.Liang,Z.;Guo,H.;Lei,H.;Cao,R.*; Co porphyrin-based metal-organic framework for hydrogen evolution reaction and oxygen reduction reaction. Chinese Chem. Lett., 2022, 33, 3999-4002.  
131.Qi,J.;Chen,M.;Zhang,W.*;Cao,R.*; Ammonium cobalt phosphate with asymmetric coordination sites for enhanced electrocatalytic water oxidation. Chin. J. Catal., 2022, 43, 1955-1962.  
130.Lei,H.;Zhang,Q.;Liang,Z.;Guo,H.;Wang,Y.;Lv,H.;Li,X.;Zhang,W.;Apfel,U-P.;Cao,R.*;Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew. Chem. Int. Ed., 2022, 61, e202201104.[Highly Cited Paper]  
129.Zhang,Q.;Lei,H.;Guo,H.;Wang,Y.;Gao,Y.;Zhang,W.;Cao,R.*; Through-Space Electrostatic Effects of Positively Charged Substituents on the Hydrogen Evolution Reaction. ChemSusChem, 2022, 15, e202200086.  
128.Huo,M.;Sun,T.;Wang,Y.;Wang,B.;Zhang,W.;Cao,R.;Ma,Y.*;Zheng,H.*; A heteroepitaxially grown two-dimensional metal-organic framework and its derivative for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A, 2022, 10, 10408-10416.  
127.Wan,S.;Li,Y.;Xu,L.*;Zhang,W.*;Cao,R.*; Autologous Mn oxides as electrocatalysts to identify the origin of the water oxidation activity. Mater. Today Sustain., 2022, 17, 100106.  
126.Li,Y.;Wang,T.;Qin,L.;Yang,S.;Zhang,W.*;Cao,R.*; Cu, Fe Dual−modified Ni3S2 nanosheets on nickel foam for bifunctional electrocatalytic water spitting. FlatChem, 2022, 33, 100368.  
125.Wang,Y.;Sun,T.;Liang,Z.;Zhang,W.;Cao,R.;Siahrostami,S.*;Zheng,H.*; Two-Dimensional Metal-Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction:Tailoring the Activity through Exposed Crystal Facets. CCS Chem., 2022, 4, 1633-1642.  
124.Wang,H.-Y.*;Xie,W.-H.;Wei,D.-D.;Hu,R.;Wang,N.;Chang,K.;Lei,S.-L.;Wang,B.*;Cao,R.*; A Hybrid Assembly with Nickel Poly-Pyridine Polymer on CdS Quantum Dots for Photo-Reducing CO2 into Syngas with Controlled H2/CO Ratios. ChemSusChem,2022,15,e202200200.  
123.Zhang,W.;Cao,R.; Water Oxidation with Polymeric Photocatalysts, Chem. Rev., 2022, 122, 5408–5410.  
122.Li,X.;Lei,H.;Xie,L.;Wang,N.;Zhang,W.;Cao,R.*; Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Acc. Chem. Res., 2022, 55, 878–892.[Highly Cited Paper]  
121.Gao,X.;Liu,X.;Yang,S.;Zhang,W.*;Lin,H.*;Cao.R.*; Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation. Chin. J. Catal., 2022, 43, 1123-1130.  

120.Li,X.;Lv,B.;Zhang,X.;Jin,X.;Guo,K.;Zhou,D.;Bian,H.;Zhang,W.;Apfel,U-P.;Cao,R.*; Introducing Water-Network-Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew. Chem. Int. Ed., 2022, 61, e202114310.[Highly Cited Paper]

 
2021
119.Wang.F.;Xu.Y.;Wang.Y.;Liang.Z.;Zhang.H.;Zhang.W.;Cao.R.;Zheng.*H.;Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts,Chem. Commun., 2021, 57, 8190–8193.  
118.Wang.Y.;Bao.Z.;Shi.M.;Liang.Z.;Cao.R.;Zheng.H.*;The Role of Surface Curvature in Electrocatalysts,Chem.Eur.J.2022,28,e202102915.  
117.Liang.Z.;Yang.C.;Zhang.W.;Zheng.H.*;Cao.R.*;Anion engineering of hierarchical Co-A (A = O, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction,Chinese Chem. Lett.,2021,32,3241–3244  
116.Gao.X.;Yang.S.;Zhang.W.;Cao.R.; Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation. Acta Phys. -Chim. Sin., 2021, 37, 2007031.  
115.Chen.Y.;Yang.S.;Liu.H.;Zhang.W.*;Cao.R.*;An unusual network of α-MnO2 nanowires with structure-­induced hydrophilicity and conductivity for improved electrocatalysis.Chinese J. Catal.,2021,42,1724–1731  
114.Yang.S.;Wan.S.;Shang.F.;Chen.D.;Zhang.W.*;Cao.R.*; Autologous manganese phosphates with different Mn sites for electrocatalytic water oxidation. Chem. Commun., 2021, 57, 6165-6168.  
113.Zhang,Q.;Wang,Y.;Wang,Y.;Yang,S.;Wu,X.;Lv,B.;Wang,N.;Gao,Y.;Xu,X.;Lei,H.*;Cao.R.*;Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction,Chinese Chem Lett,2021,32,3807–3810.  
112.Jin,X.;Li,X.;Lei,H.;Guo,K.;Lv,B.;Chen,D.;Zhang,W.;Cao,R.*;Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments.J. Energ. Chem,2021,63,659-666.  
111.Hu,R.;Xie,W-H.;Wang,H-Y.*;Guo,X-A.;Zhang,X-P.*;Cao.R.*;Visible light-driven carbon-carbon reductive coupling of aromatic ketones activated by Ni-doped CdS quantum dots: An insight into the mechanism.Appl Catal B: Environ,2022,304,120946.  
110.Wang,H-Y,;Hu,R.;Wang,N.;Hu,G-L.;Wang,K.;Xie,W-H.;Cao,R.;Boosting photoanodic activity for water splitting in carbon dots aqueous solution without any traditional supporting electrolyte.Appl Catal B: Environ,2021,296,120378.  
109.Han,J.;Wang,N.;Li,X.*;Zhang,W.;Cao,R.*;Improving Electrocatalytic Oxygen Reduction Activity and Selectivity with a Cobalt Corrole Appended with Multiple Positively Charged Proton Relay Sites,J. Phys. Chem. C 2021, 125, 45, 24805–24813.  
108.Lv,H.;Guo,H.;Guo,K.;Lei,H.;Zhang,W.;Zheng,H.;Liang,Z.*;Cao,R.*;Substituent position effect of Co porphyrin on oxygen electrocatalysis. Chin. Chem. Lett., 2021, 32, 2841-2845.  
107.Li,X.;Zhang,X-P.;Guo,M.;Zhang,W.; Lee,Y-W.*; Nam,Wonwoo.*;Cao,R.*,Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex.J. Am. Chem. Soc, 2021,143,14613–14621.  
106.Zhang,W.;Cao,R*,Switching the O–O bond-formation mechanism by controlling water activity.Chem,2021,7,1981–1992.  
105.Liang,Z.;Guo,H.;Zhou,G.;Guo,K.;Wang,B.;Lei,H.;Zhang,W.;Zheng,H.;Apfel Ulf-Peter.;Cao,R.*; Metal–Organic-Framework-Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed., 2021, 60, 8472–8476.[Highly Cited Paper]  
104.Liang,Z.;Kong,N.;Yang,C.;Zhang,W.;Zheng,H.*;Lin,H.*;Cao,R.*; Highly Curved Nanostructure-Coated Co, N-Doped Carbon Materials for Oxygen Electrocatalysis. Angew. Chem. Int. Ed., 2021, 60, 12759–12764.[Highly Cited Paper]  
103.Lv,B.;Li,X.;Zhang,W.;Apfel,Ulf-peter.;Cao,R.*,Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers,Angew.Chem.Int.Ed.2021,60,12742 –12746.  
102.Li,Y.;Wang,N.;Lei,H.*;Li,X.;Zheng,H.;Wang,H.;Zhang,W.;Cao,R.*,Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction. Coord. Chem. Rev., 2021, 442, 213996.  
101.Guo,K.;Lei,H.;Li,X.;Zhang,Z.;Wang,Y.;Guo.H.;Zhang,W.;Cao,R.*,Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins. Chin. J. Catal., 2021, 42, 1439-1444.  
100.Lei,H.;Zhang,Q.;Wang,Y.;Gao,Y.;Wang,Y.;Liang,Z.;Zhang,W.;Cao,R.*,Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins.Dalton Trans., 2021, 50, 5120–5123.  
99.Zhang,X.;Wang,H.;Zheng,H.;Zhang,W.;Cao,R.*; O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin. J. Catal., 2021, 42, 1253-1268.[Highly Cited Paper]  
98.Xie,L.;Zhang,X.;Zhao,B.;Li,Ping.;Qi,J.;Guo,X.;Wang,B.;Lei,H.;Zhang,W.;Ulf-Peter Apfel.;Cao,R.*; Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic. Angew. Chem. Int. Ed., 2021, 60, 7576–7581.[Highly Cited Paper]  
97.Zhang,X.;Anirban Chandra.;Lee,Y.;Cao,R.*;Kallol Ray.*;Wonwoo Nam.*; Transition metal-mediated O–O bond formation. Chem. Soc. Rev., 2021, 50, 4804–4811.[Highly Cited Paper]  
96.Liang,Z.;Wang,H.;Zheng,H.;Zhang,W.;Cao,R.*; Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev., 2021, 50, 2540-2581.[Highly Cited Paper]  
95.Wang,Y.;Wang,B.*;Yuan,H.;Liang,Z.;Huang,Z.;Zhou,Y.;Zhang,W.;Zheng,H.*;Cao,R.*,Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction.J. Energy Chem., 2021, 58, 391–396.  
94.Chen,D.;Chen,Y.;Zhang,W.*;Cao,R.*, Nickel selenide from single-molecule electrodeposition for efficient electrocatalytic overall water splitting.New J. Chem., 2021,45, 351-357.  
93.Qin,H.;Wang,Y.;Wang,B.*;Duan,X.;Lei,H.;Zhang,X.;Zheng,H.;Zhang,W.;Cao,R.*; Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis. J. Energy Chem., 2021, 53, 77-81.[Highly Cited Paper]  
2020
92.Wang,Y.;Dr.Liang,Z.;Prof.Zheng,H.*;Prof.Cao,R.*,Recent Progress on Defect‐rich Transition Metal Oxides and Their Energy‐Related Applications.Chem Asian J. 2020, 15, 3717–3736.  
91.Shang,F.;Wan,S.;Dr.Gao,X.;Zhang,W.*;Prof.Cao,R.*,Engineering Hierarchical‐Dimensional Co(OH)F into CoP Superstructure for Electrocatalytic Water Splitting.ChemCatChem.2020, 12, 4770-4774.  
90.Zhou,G.;Wang,B.*;Cao,R.*,Acid Catalysis in Confined Channels of Metal−Organic Frameworks:Boosting Orthoformate Hydrolysis in Basic Solutions.J. Am. Chem. Soc. 2020, 142, 14848−14853.  
89.Xie,L.;Tian,J.;Ouyang,Y,;Guo,X.;Zhang,W.*;Ulf-Peter Apfel.;Zhang,W.;Cao,R.*,Water-Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction.Angew. Chem. Int. Ed. 2020, 59, 15844 – 15848.  
88.Liang,Z.;Zheng,H.*;Cao,R.*,Recent advances in Co-based electrocatalysts for the oxygen reduction reaction.Sustainable Energy & Fuels.2020, 4, 3848–3870.  
87.Meng,J.;Lei,H.;Li,X.;Zhang,W.;Cao,R.*; The Trans Axial Ligand Effect on Oxygen Reduction.Immobilization Method May Weaken Catalyst Design for Electrocatalytic Performance. J. Phys. Chem. C, 2020, 124, 30, 16324–16331.  
86.Zhang,C.;Yang,H.;Zhong,D.;Xu,Y.;Wang,Y.;Yuan,Q.;Liang,Z.;Wang,B.;Zhang,W.;Zheng,H.*;Cheng,T.*;Cao,R.*; A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin... J. Mater. Chem.A, 2020, 8, 9536-9544.  
85.Qi, J.; Lin, Y.; Chen, D.; Zhou, T.; Zhang, W.*; Cao, R., Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem. Int. Ed. 2020, 59, 8917-8921.  
84.Guo, X.; Wang, N.; Li, X.; Zhang, Z.; Zhao, J.; Ren, W.; Ding, S.; Xu, G.; Li, J.; Apfel, U.; Zhang, W.; Cao, R.*, Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect. Angew. Chem. Int. Ed. 2020, 59, 8941-8946.  
83.Lei,H.; Wang,Y.;Zhang,Q.;Cao,R.*,First-row transition metal porphyrins for electrocatalytic hydrogen evolution — a SPP/JPP Young Investigator Award paper.J. Porphyrins Phthalocyanines.2020, 24, 1361–1371.  
82.Guo, K.; Li, X.; Lei, H.; Zhang, W.; Cao, R.*, Unexpected effect of intramolecular phenolic group on electrocatalytic CO2 reduction. ChemCatChem 2020, 12, 1591-1595.  
81.Zhao, B.; Lei, H.; Wang, N.; Xu, G.; Zhang, W.; Cao, R.*, Underevaluated solvent effects in electrocatalytic CO2 reduction by FeIII chloride tetrakis(pentafluorophenyl)porphyrin. Chem. Eur. J. 2020, 26, 4007-4012.  
80.Gao,X.;Chen,Y.;Sun,T.;Huang,J.;Zhang,W.*;Wang,Q.;Cao,R.*; Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy Environ. Sci. 2020, 13, 174-182.[Highly Cited Paper]  
79. Liu, Y.; Zhou, G.; Zhang, Z.; Lei, H.; Yao, Z.; Li, J.; Lin, J.; Cao, R.*, Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(II) porphyrin–porphyrin dyad. Chem. Sci. 2020, 11, 87-96.  
2019
78.Chen,D.;Gao,X.; Liu,H.;Zhang,W.*; Cao R.*,Nickel Selenide Derived from [Ni(en)3](SeO3) Complex for Efficient Electrocatalytic Overall Water Splitting.Journal.Electrochem.2019,25,553-561.  
77.Yuan,H.;Wang,Y.;Yang,C.;Liang,Z.;Chen,M.;Zhang,W.;Zheng,H.*;Cao,R.*,Ultra-thin Co-Fe layered double hydroxide hollow nanocubes for efficient electrocatalytic water oxidation.ChemPhysChem,2019,20,2964-2967.  
76.Huo,M.;Wang,B.;Zhang,C.;Ding,S.;Yuan,H.;Liang,Z.;Qi,J.;Chen,M.;Xu,Y.;Zhang,W.;Zheng,H.*;Cao,R.*,Chem.Eur.J.,2019,25,12780-12788.  
75.Gao,X.;Chen,D.;Qi,J.;Li,F.;Song,Y.;Zhang,W.*;Cao,R.*,NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation.Small,2019,15,1904579.  
74.Qi,J.;Chen,M.;Zhang,W.*;Cao,R.*,Hierarchical-dimensional material: A Co(OH)2 superstructure with hybrid dimensions for enhanced water oxidation.ChemCatChem,2019,11,5969-5975.  
73.Xie,L.;Li,X.;Wang,B.;Meng,J.;Lei,H.;Zhang,W.;Cao,R.*,Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral media.Angew.Chem.Int.Ed.,2019,58,18883-18887.  
72.Xu,Y.;Huang,Z.;Wang,B.;Liang,Z.;Zhang,C.;Zheng,H.*;Cao, R.*,A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction.Chem.Commun.,2019,55,14805-14808.  
71.Xu,G.;Lei,H.;Zhou,G.;Zhang,C.;Xie,L.;Zhang,W.;Cao,R.*,Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubes.Chem.Commun.,2019,55,12647-12650.  
70.Qi,J.;Zhang,W.*;Cao,R.*,A new strategy for solar-to-hydrogen energy conversion: photothermal-promoted electrocatalytic water splitting.ChemElectroChem,2019,6,2762-2765.  
69.Liang,Z.;Zheng,H.*;Cao,R.*,Importance of electrocatalyst morphology for the oxygen reduction reaction.ChemElectroChem,2019,6,2600-2614.  
68.Huo,M.;Yang,Z.;Yang,C.;Gao,Z.;Qi,J.;Liang,Z.;Liu,K.;Chen,H.;Zheng,H.*;Cao,R.*,Hierarchical Zn-doped CoO nanoflowers for electrocatalytic oxygen evolution reaction.ChemCatChem,2019,11,1480-1486.  
67.Lei, H.;Li,X.;Meng,J.;Zheng,H.;Zhang,W.;Cao,R.*,Structure effects of metal corroles on energy-related small molecule activation reactions.ACS Catal.,2019,9,4320-4344.  
66.Meng,J.;Lei,H.;Li,X.;Qi,J.;Zhang,W.;Cao,R.*,Attaching cobalt corroles onto carbon nanotubes: verification of four-electron oxygen reduction by mononuclear cobalt complexes with significantly improved efficiency.ACS Catal.,2019,9,4551-45  
65.Liu,Y.;Han,Y.;Zhang,Z.;Zhang,W.;Lai,W.;Wang,Y.;Cao,R.*,Low overpotential water oxidation at neutral pH catalyzed by a copper(II) porphyrin.Chem.Sci.,2019,10,2613-2622.[Highly Cited Paper]  
64.Li,H.;Li,X.;Lei,H.;Zhou,G.;Zhang,W.;Cao,R.*,Convenient immobilization of cobalt corroles on carbon nanotubes through covalent bonds for electrocatalytic hydrogen and oxygen evolution reactions.ChemSusChem,2019,12,801-806.  
63.Wang,N.;Lei,H.;Zhang,Z.;Li,J.;Zhang,W.;Cao,R.*,Electrocatalytic hydrogen evolution with gallium hydride and ligand-centered reduction.Chem.Sci.,2019,10,2308-2314.  
62.Liang,Z.;Zhang,C.;Xu,Y.;Zhang,W.;Zheng,H.*;Cao,R.*,Dual tuning of ultrathin α‑Co(OH)2 nanosheets by solvent engineering and coordination competition for efficient oxygen evolution.ACS Sustainable Chem.Eng.,2019,7,3527-3535.  
61.Liang,Z.;Yang,Z.;Duang,J.;Qi,J.;Yuan,H.;Gao,J.;Zhang,W.;Zheng, H.*;Cao,R.*,Hollow bimetallic zinc cobalt phosphosulfides for efficient overall water splitting.Chem.Eur.J.,2019,25,621-626.  
60.Liu,H.;Gao,X.;Yao,X.;Chen,M.;Zhou,G.;Qi,J.;Zhao,X.;Wang,W.*;Zhang,W.*;Cao,R.*,Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation.Chem.Sci.,2019,10,191-197.  
2018
59.Wang,N.;Zheng,H.;Zhang,W.;Cao,R.*,Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation.Chin.J.Catal.,2018,39,228-244.  
58.Gao,X.;Qi,J.;Wan,S.;Zhang,W.*;Wang,Q.*;Cao,R.*,Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution.Small,2018,14,1803361.  
57.Li,X.;Lei,H.;Liu,J.;Zhao,X.;Ding,S.;Zhang,Z.;Tao,X.;Zhang,W.;Wang,W.;Zheng,X.*;Cao,R.*,Carbon nanotubes with cobalt corroles for hydrogen and oxygen evolution in pH 0-14 solutions.Angew.Chem.Int.Ed.,2018,57,15070-15075.  
56.Liang,Z.;Fan,X.;Lei,H.;Qi,J.;Huo,M.;Yuan,H.;Zhang,W.;Lin,H.*;Zheng,H.*;Cao,R.*,Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction.Angew.Chem,Int.Ed,2018,57,13187-13191.  
55.Liang,Z.;Huang,Z.;Yuan,H.;Yang,Z.;Zhang,C.;Xu,Y.;Zhang,W.;Zheng,H.*;Cao,R.*,Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation.Chem.Sci.,2018,9,6961-6968.  
54.Liang,Z.;Zhang,C.;Yuan,H.;Zhang,W.;Zheng,H.*;Cao,R.*,PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts.Chem.Commun.,2018,54,7519-7522.  
53.Lei,H.;Chen,M.;Liang,Z.;Liu,C.;Zhang,W.*;Cao,R.*,Ni2P hollow microspheres for electrocatalytic oxygen evolution and reduction reactions.Catal.Sci.Technol.,2018,8,2289-2293.  
52.Liang,Z.;Yang,Z.;Zhang,W.;Zheng,H.*;Sun,J.*;Cao,R.*,Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim. Acta, 2018, 271, 526-536.  
51.Jia,X.;Yang,Z.;Wang,Y.;Chen,Y.;Yuan,H.;Chen,H.;Xu,X.;Gao,X.;Liang,Z.;Sun,Y.;Li,J.;Zheng,H.*;Cao,R.*,Hollow mesoporous silica@metal-organic framework and applications for pH-responsive drug delivery.ChemMedChem,2018,13,400.  
50.Qi,J.;Zhang,W.*;Cao,R.*,Porous materials as highly efficient electrocatalysts for the oxygen evolution reaction.ChemCatChem,2018,10,1206-1220.  
49.Zhang,Z.;Xu,L.*;Cao,R.*,Structures and single crystal to single crystal transformations of cadmium frameworks using a flexible tripodal ligand.New J.Chem.,2018,42,5593-5601.  
48.Qi,J.;Zhang,W.*;Cao,R.*,Solar-to-hydrogen energy conversion based on water splitting.Adv.Energy Mater.2018,8,1701620.[Highly Cited Paper]  
47.Guo,X.;Li,X.;Liu,X.;Li,P.;Yao,Z.;Li,J.;Zhang,W.;Zhang,J.;Xue,D.*;Cao,R.*,Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers.Chem.Commun.,2018,54,845-848.  
2017
46.Zhao,X.;Zhang,W.*;Cao,R.*,PVP-assisted synthesis of porous CoO prisms with enhanced electrocatalytic oxygen evolution properties.J.Energy Chem.2017,26,1210-1216.  
45.Wu,Y.;Wang,L.;Chen,M.;Jin,Z.;Zhang,W.*;Cao,R.*,Preparation of cobalt-based electrodes by physical vapor deposition on various nonconductive substrates for electrocatalytic water oxidation.ChemSusChem,2017,10,4699-4703.  
44.Li,X.;Lei,H.;Guo,X.;Zhao,X.;Ding,S.;Gao,X.;Zhang,W.;Cao,R.*,Graphene-supported pyrene-modified cobalt corrole with axial triphenylphosphine for enhanced hydrogen evolution in pH 0-14 aqueous solutions.ChemSusChem,2017,10,4632-4641.  
43.Chen,F.;Wang,N.;Lei,H.;Guo,D.;Zhang,W.;Lai,W.*;Cao,R.*,Electrocatalytic water oxidation by a water-soluble copper(II) complex with a copper-bound carbonate group acting as a potential proton shuttle.Inorg.Chem.,2017,56,13368-13375.  
42.Chen,M.;Qi,J.;Guo,D.;Lei,H.;Zhang,W.*;Cao,R.*,Facile synthesis of sponge-like Ni3N/NC for electrocatalytic water oxidation.Chem.Commun.,2017,53,9566-9569.  
41.Qi,J.;Zhang,W.*;Cao,R.*,Aligned cobalt-based Co@CoOx nanostructures for efficient electrocatalytic water oxidation.Chem.Commun.,2017,53,9277-9280.  
40.Wan,S.;Qi,J.;Zhang,W.*;Cao,R.*,Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation.Adv.Mater.2017,29,1700286.[Highly Cited Paper]  
39.Guo,D.;Chen,F.;Zhang,W.*;Cao,R.*,Phase-transfer synthesis of α-Co(OH)2 and its conversion to CoO for electrocatalytic water oxidation.Sci.Bull.,2017,62,626-632.  
38.Sun,H.;Han,Y.;Lei,H.;Chen,M.;Cao,R.*,Cobalt corroles with phosphonic acid pendants as catalysts for oxygen and hydrogen evolution from neutral aqueous solution.Chem.Commun.,2017,53,6195-6198.  
37.Chen,M.;Qi,J.;Zhang,W.*;Cao,R.*,Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution.Chem.Commun.,2017,53,5507-5510.  
36.Xu,L.;Lei,H.;Zhang,Z.;Yao,Z.;Li,J.;Yu,Z.;Cao,R.*,The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions.Phys.Chem.Chem.Phys.,2017,19,9755-9761.  
35.Zhang,S.;Zhang,Z.;Cao,R.*,Two-and three-dimensional silver acetylide frameworks with high-nuclearity silver cluster building blocks assembled using a bifunctional (4-ethynylphenyl)diphenyl phosphine ligand.Inorg.Chim.Acta,2017,461,57-63.  
34.Liu,C.;Lei,H.;Zhang,Z.;Chen,F.;Cao,R.*,Oxygen reduction catalyzed by a water-soluble binuclear copper (II) complex from a neutral aqueous solution.Chem.Commun.,2017,53,3189-3192.  
33.Zhang,W.;Lai,W.;Cao,R.*,Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin-and corrole-based systems.Chem.Rev.,2017,117,3717-3797.[Highly Cited Paper]  
32.Guo,D.;Qi,J.;Zhang,W.*;Cao,R.*,Surface electrochemical modification of a nickel substrate to prepare a NiFe-based electrode for water oxidation.ChemSusChem,2017,10,394-400.[Highly Cited Paper]  
31.Zhang,W.;Wu,Y.;Qi,J.;Chen,M.;Cao,R.*,A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency.Adv.Energy Mater.,2017,7,1602547.[Highly Cited Paper]  
30.Gao,Z.;Qi,J.;Chen,M.;Zhang,W.*;Cao,R.*,An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution.Electrochim.Acta,2017,224,412-418.[Highly Cited Paper]  
2016
29.Zhang,Z.;Zheng,K.;Xia,T.;Xu,L.;Cao,R.*,Ni3 versus Ni30: A truncated octahedron metal-organic cage constructed with [Ni5(CN)4]6+ squares and tripodal tris-tacn ligands that are large and flexible.Chem.Eur.J.,2016,22,17576-17580.  
28.Zheng,H.;Gao,F.*;Valtchev,V.,Nanosized inorganic porous materials: fabrication, modification and application.J.Mater.Chem.A,2016,4,16756-16770.  
27.Han,Y.;Fang,H.;Jing,H.;Sun,H.;Lei,H.;Lai,W.*;Cao,R.*,Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen-evolution reaction.Angew.Chem.Int.Ed.,2016,55,5457-5462.  
26.Zhang,W.*;Qi,J.;Liu,K.;Cao,R.*,A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation.Adv.Energy Mater.,2016,6,1502489.[Highly Cited Paper]  
25.Xiang,R.;Wang,H.*;Xin,Z.;Lu,Y.;Li,C.;Sun,H.;Gao,X.;Cao,R.*,A water-soluble copper-polypyridine complex as a catalyst for both photo-induced and electrocatalytic oxygen evolution.Chem.Eur.J.,2016,5,1602-1607.  
24.Zhang,R.;Zhao,C.;Li,X.;Zhang,Z.;Ai,X.;Chen,H.*;Cao,R.*,A homoleptic,all-alkynyl-stabilized highly luminescent Au8Ag8 cluster with a single crystal X-ray structure.Dalton Trans.,2016,45,12772-12778.  
23.Lei,H.;Liu,C.;Zhang,W.;Cao,R.*,Noncovalent immobilization of a pyrene-modified cobalt corrole on carbon supports for enhanced electrocatalytic oxygen reduction and oxygen evolution in aqueous solution.ACS Catal.,2016,6,6429−6437.  
22.Zheng,H.*;Zhang,Y.;Liu,L.;Wan,W.;Guo,P.;Nyström,A.*;Zou,X.*,One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery.J.Am.Chem.Soc.,2016,138,962-968.  
21.Verho,O.*;Zheng,H.(Equal contribution);Gustafson,K.;Zou,X.*,Bäckvall,J.*,Application of Pd nanoparticles supported on mesoporous hollow silica nanospheres for the efficient and selective semihydrogenation of alkynes.ChemCatChem,2016,8,773-778.  
2015
20.Wu,Y.;Zhang,W.*;Cao,R.*,Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution.Angew.Chem.Int.Ed.2015.16.4870-4875.[Highly Cited Paper]  
19.Tang,F.;Cao,R.*;Gong H.-Y.*,Aromatic plane effect study in pseudorotaxane construction between ‘Texas-sized’ molecular box and carboxylate anions.Tetrahedron Lett.,2015,56,820-823.  
18.Gong,H.Y.*;Tang,F.;Rambo,B.M.;Cao,R.*;Xiang,J.F.*;Sessler,J.L.*,Aromatic sulfonate anion-induced pseudorotaxanes: environmentally benign synthesis, selectivity, and structural characterization.Chem.Commun.,2015,51,1795-1798.  
17.Liu,X.;Yi,Q.;Han,Y.;Liang,Z.;Shen,C.;Zhou,Z.;Sun,J.L.;Li,Y.;Du,W.*;Cao,R.*,A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures.Angew.Chem.Int.Ed.2015,54,1846-1850.  
16.Zhang,Z.;Yang,Y.;Sun,H.;Cao,R.*,Syntheses,structures and anion exchange properties of accommodative silver chains using a positively charged and flexible ligand.Inorg.Chim.Acta,2015,434,158-171.  
15.Han,Y.;Wu,Y.;Lai,W.*;Cao,R.*,Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential.Inorg.Chem.,2015,54,5604-5613.  
14.Wang,Z.;Lei,H.;Cao,R.*;Zhang,M.*,Cobalt corrole on carbon nanotube as a synergistic catalyst for oxygen reduction reaction in acid media.Electrochim.Acta,2015,171,81-88.  
13.Zhang,R.;Hao,X.;Li,X.;Zhou,Z.;Sun,J.;Cao,R.*,Soluble silver acetylide for the construction and structural conversion of all-alkynyl-stabilized high-nuclearity homoleptic silver clusters.Cryst.Growth Des.,2015,15,2505-2513.  
12.Ning,Y.;Gao,M.;Zheng,K.;Zhang,Z.;Zhou,J.;Hao,X.;Cao,R.*,Phosphate monoester hydrolysis at tricopper site: The advantage and disadvantage of closely assembled trimetallic active sites.J.Mol.Catal.A:Chem.,2015,403,43-51.  
11.Zheng,H.*;Tai,C.;Su,J.;Zou,X.;Gao,F.*,Ultra-small mesoporous silica nanoparticles as efficient carriers for pH responsive releases of anti-cancer drugs.Dalton Trans.,2015,44,20186-20192.  
10.Lei,H.;Fang,H.;Han,Y.;Lai,W.*;Fu,X.*;Cao,R.*,Reactivity and mechanism studies of hydrogen evolution catalyzed by copper corroles.ACS Catal.,2015,5,5145-5153.  
9.Chen,M.;Wu,Y.;Han,Y.;Lin,X.;Sun,J.;Zhang,W.*;Cao,R.*,An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution.ACS Appl.Mater.Interfaces,2015,7,21852-21859.  
8.Qi,J.;Zhang,W.*;Xiang,R.;Liu,K.;Wang,H.;Chen,M.;Han,Y.;Cao,R.*,Porous nickel-iron oxide as highly efficient electrocatalyst for oxygen evolution reaction.Adv.Sci.,2015,2,1500199.[Highly Cited Paper]